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Abstract
A general concept for photoinduced structural phase transitions is developed,
in terms of the hidden multi-stability of the ground state and the proliferations
of optically excited states. Taking the ionic (I) to neutral (N) phase transition
in the organic charge transfer (CT) crystal, tetrathiafuluvalene-p-chloranil, as
a typical example for this type of transition, we, at first theoretically show an
adiabatic path which starts from CT excitons in the I-phase, but finally reaches
to a N-domain with a macroscopic size. In connection with this I–N transition,
the concept of the initial condition sensitivity is also developed so as to clarify
experimentally observed nonlinear characteristics of this material.

Then, using a simplified model for the many-exciton system, we
theoretically study the early-time quantum dynamics of the exciton
proliferation, which finally results in the formation of a domain with a large
number of excitons. For this purpose, we derive a stepwise iterative equation to
describe the exciton proliferation, and clarify the origin of the initial condition
sensitivity.

Possible differences between a photoinduced non-equilibrium phase and
an equilibrium phase at high temperatures are also clarified from general and
conceptional points of view, in connection with recent experiments on the
photoinduced phase transition in an organo-metallic complex crystal. It will
be shown that the photoinduced phase can make a new interaction appear as
a broken symmetry only in this phase, even when this interaction is almost
completely hidden in all the equilibrium phases, such as the ground state and
other high-temperature phases.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)
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1. Introduction

There are various kinds of materials around us, and they are such ones that few kinds of
macroscopic numbers of atoms or molecules are condensed with a definite composition ratio.
Without changing this chemical composition, a material can take various phases from gaseous
and liquid phases to crystalline ones, as temperature decreases. Even at low temperatures, a
material can take various crystalline phases, whose crystal structure and electronic state change
as temperature decreases. However, all these states are so-called equilibrium phases, in the
sense that the free energy of each state takes its global minimum at each temperature.

Let us now proceed to non-equilibrium phases generated from an equilibrium one by
some external stimulation or excitation. Usually, these states are transient ones having higher
energies than the equilibrium one, but, depending on the type of stimulation or excitation, we
may get a variety of states, even if the starting equilibrium phase is the same. They relax
down to the starting equilibrium after a period of time. However, if they are a locally stable
state, in the sense that their free energy take local minima separated from the global one by
substantial energy barriers, the time required for relaxation will be long. In that case, we can
complete the necessary observations to determine their characteristics within this long lifetime.
Hence, such a long-lived locally stable non-equilibrium phase is effectively the same as the
equilibrium one.

Various amorphous crystals are well known as typical examples for these non-equilibrium
phases. They are brought about by cooling materials rapidly from their high-temperature
phases. The lifetime of the relaxation is believed to be much longer than the time scale of our
daily life. Unfortunately, however, these amorphous crystals have no well defined long-range
periodic crystalline or electronic order.

Very recently, a new class of insulating solids has been discovered, which, when
illuminated by only a few visible photons, become pregnant with a macroscopic excited
domain that has new structural and electronic orders quite different from the initial ground
state (equilibrium phase). This phenomenon is called ‘photoinduced phase transition’ and we
can generate new long-lived locally stable macroscopic non-equilibrium phases through the
excitations (or stimulations) by a few visible photons. The purpose of this paper is to review
recent theoretical and experimental studies on this phenomenon.

2. Relaxation of optically excited states and photoinduced structural phase transitions

As is already well known, an electron in an insulating crystal induces a local lattice distortion
around itself, when it is excited by a photon. This phenomenon is called the ‘lattice relaxation’
of an optical excitation, and the resultant state is often called the ‘photoinduced structural
change’, as schematically shown in figure 1. This relaxation phenomenon has been studied
in detail, in various kinds of insulating crystals, during the last 50 years. According to the
original concept of this lattice relaxation, however, it is tacitly assumed to be a microscopic
phenomenon, in which only few atoms and electrons are involved [1].

In recent years, on the other hand, there have been discovered many unconventionally
photoactive solids, where the relaxation of optical excited states results in various collective
motions involving a large number of atoms and electrons. In some cases, it results in a
macroscopic excited domain with new structural and electronic orders quite different from
the original ones. This situation can be called ‘photoinduced structural phase transition
(PSPT)’ [2].

These problems are closely related to the hidden multi-stability intrinsic to each solid.
If the ground state of a solid is pseudo-degenerate, being composed of true and false ground
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Figure 1. Schematic illustration of photoinduced structural phase transition, hidden multi-stability,
proliferation and thermal energy.

states with each structural and electronic orders different from others, we call it multi-stable.
In this case, the photo-absorption, being initially a single-electron excitation from the true
ground state, can trigger local but macroscopic instabilities. The photo-absorption can induce
low-lying collective excitations during the lattice relaxation, and can finally produce a false
ground state at the expense to create boundaries between the two states. Thus a local but
macroscopic excited domain appears. In other words, the initially created single-electron
excitation proliferates during the relaxation, and grows up into a macroscopic order, as
schematically shown in figure 1.

The origin of the pseudo-degeneracy can be understood from the conceptional point of view
related with the cohesive mechanism of each solid. As mentioned before, the solid is composed
of macroscopic numbers of few kinds of atoms or molecules with a definite composition ratio.
However, even if the constituent atoms (molecules) are defined, the structural and electronic
orders, which will be realized in the macroscopic ground state, are not always determined
straightforwardly. For example, in the case of alkali halide, the ionic state and the covalent
one are two well known candidates for the ground state [3]. Moreover, if there are two
predominant but mutually conflicting elements in the original Hamiltonian, there appear two
candidates that inherit this conflict. Thus, it is quite usual that we have the multi-stability or
the pseudo-degeneracy with the true and false ground states.

It is also very important to see the relation between photoinduced phase transitions and the
ordinary ones due to the thermal excitation. When the false ground state is just above the true
one, and easily excited by the thermal energy, we may get the ordinary phase transition, and can
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recognize the presence of this false ground state. However, there will be various other cases that
the energy of the false ground state is too high to be excited thermally. Ordinary thermodynamic
measurements are concerned only with the true ground state or small excitations therefrom,
and hence can never detect such hidden states. Even in these difficult cases, we can create the
false ground state by the photo-excitation and the lattice relaxation therefrom, as schematically
shown in figure 1.

Such a false ground state always disappears finally within a finite lifetime, and can never
be permanent, as mentioned before. However, according to the recent progress of laser
spectroscopy techniques, an infinite lifetime is no longer necessary for a state to be recognized
as a well-defined state, provided that it can last long enough to be clearly observed by other
photons to detect it.

Let us briefly consider the difference between the present photoinduced phase transition
and the so-called ‘new material design (or search)’, which is the latest trend in the field of
the material science. One of the standard techniques for the new material design (or search)
is to apply static external fields such as magnetic fields or pressures onto a material, which
is expected to give novel or anomalous properties absent in other materials existing already.
Another standard technique is to design or synthesize the material by changing its chemical
composition, little by little, so that it will show quite new properties.

In the case of static external field, however, this changes all the electronic states of the
material, both ground and excited states, unselectively. Photons have definite momentum,
phase, helicity and energy, and hence, they can create only particular excited states, selectively
and quite intensively. In contrast to the chemical design or synthesis, the photoinduced phase
transition does not change the chemical composition of the material, but can realize new states.
Thus the research for photoinduced phase transitions will be able to open a new multistoried
concept for materials.

3. Photoinduced ionic–neutral phase transition in organic molecular crystal TTF-CA

As one of the typical examples for the PSPT, here we will be concerned with the photoinduced
I–N transition in an organic molecular crystal tetrathiafuluvalene-p-chloranil (TTF-CA), and
review the present stage for its experimental studies. Both tetrathiafuluvalene (TTF) and
p-chloranil (CA) are planar organic molecules (figure 2(a)), and their crystal has a quasi-1D
chain-like structure, in which these two molecules are alternately stacked, along this 1D chain
axis.

In the true ground state of this crystal at absolute zero of temperature, TTF and CA become
a cation and an anion, respectively, and make a dimer with each other as shown in figure 2(a).
This is called the I-phase. On the other hand, we also have the N-phase, in which neutral TTF
and CA are stacked alternately without dimerization (figure 2(d)). This is the accidentally
pseudo-degenerate false ground state. At absolute zero of temperature, it is just above the
ionic true ground state.

It is now well established that, keeping this material in the low enough temperature, but
shining a strong laser light of about 0.6–2.2 eV onto it, we can generate the N-domain even
in the ionic ground state, as shown in figure 2(c). This change was confirmed by the change
of the optical reflectance spectrum. In fact, as the N-domain expands in the I-phase, a new
peak appears at around 3 eV in that spectrum. This N-domain is composed of about 200–
1000 neutral pairs, and can last for about 10−3 s [4]. This is nothing else but the PSPT. We
can think of a simple and intuitive scenario for this transition in such a way as schematically
shown in figures 2(b) and 2(c). That is, a single photon can make a single charge transfer (CT)
excitation between neighbouring molecules, which is just equal to a neutral pair, and after
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Dimerized

Monomerized

Figure 2. Schematic illustration of photoinduced ionic → neutral structural phase transition in
TTF-CA crystal. (a) Ionic phase, (b) charge transfer exciton, (c) neutral domain, (d) neutral phase.

that, the number of this neutral pair will increase like a domino game. However, by the recent
experimental studies shown in figure 3 [5], this simple scenario is proved wrong.

In this figure, we have shown the photo-absorption spectrum of TTF-CA as a small inset.
It has two peaks at 0.6 and 2.2 eV. The first one, being the elementary optical excitation
of this crystal, corresponds to the aforementioned inter-molecular CT excitation. Among a
macroscopic number of neighbouring ion pairs (TTF+ and CA−) in figure 2(a), only a single
neighbouring ion pair returns back to a neutral pair (TTF and CA) by this excitation as shown
in figure 2(b), and this neutral pair also itinerates along the crystal axis, keeping all other pairs
still ionic. This is nothing else but the so-called inter-molecular CT exciton, wherein a hole
and an electron (a positive charge and a negative one relative to the I-phase) are bound together,
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Figure 3. The efficiency of neutral phase generation in TTF-CA as a function of total absorbed
photonic energy. The small inset denotes the light absorption spectrum of TTF-CA crystal. From
Tanimura [5].

so that they are always at two neighbouring molecules even if their centre of mass itinerates.
The second peak at 2.2 eV corresponds to an intra-molecular electronic transition of TTF. The
thick solid line in figure 3 denotes the efficiency of the N-phase generation as function of the
exciting photon intensity, when the photon energy is fixed at this CT exciton (0.6 eV). We
can clearly see that there is a threshold in the intensity below which the N-phase can never
be generated. This means that a single CT exciton alone can never result in the N-phase, but
only through a nonlinear co-operation between several photo-excited CT excitons can the new
phase be attained. This is the first noteworthy characteristic of the TTF-CA crystal.

4. Initial condition sensitivity

The second noteworthy characteristic, which we can see from figure 3, is the difference between
the dashed line and the aforementioned thick solid line. Exactly speaking, the horizontal axis
of this figure does not simply denote the photon intensity itself, but denotes the total photon
energy which is absorbed in the unit volume of the TTF-CA crystal. This total energy is
calculated by taking three quantities into account; the absorption coefficient, the energy of the
photon and its intensity. Thus, we can compare the 0.6 eV excitation and the 2.2 eV excitation
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(the thick dashed line) on an equal footing. For example, if we focus on the point with a
value 0.25 of the horizontal axis in figure 3, we find that the efficiency becomes very high or
almost zero, depending sensitively on the photon energy, although the total absorbed photonic
energies are the same. We can also excite using various other photons in between (0.6–2.2 eV),
keeping the total absorbed photonic energies the same. However, all these excitations give
different efficiencies, ranging between the two lines in figure 3.

From this fact, we can immediately conclude that this is not an ordinary thermal phase
transition. In the experimental studies for photoinduced phase transitions, the first thing we
have to examine is whether it is an ordinary thermal phase transition or not, because the absorbed
photons may often be converted into heat in the crystal, raising up its temperature, and may
indirectly result in ordinary thermal phase transitions. In the case of this indirect thermal phase
transition, however, its generation efficiency will depend only on the total absorbed photon
energy, and will never sensitively depend on the type of excitation. Figure 3 shows that the
generation efficiency quite sensitively depends on the type of excitation, that is the exciting
photon energy, even if the total absorbed photonic energies are the same. In figure 1, the
aforementioned two types of excitation start from the common ground state minimum equally,
and moreover, the energies of the final states of the Franck–Condon transition are almost the
same.

Here, we should emphasize the so-called Franck–Condon principle. The optical transition
can complete within a time of the order of 10−15 s, provided that its transition energy is
in the visible region. But the period of oscillation of a crystal lattice or phonon is of the
order of 10−12 s. Thus, the configuration of the crystal lattice can never change during the
optical transition and, hence, it can occur only vertically, as schematically shown in figure 1.
Consequently, possible differences between the aforementioned two transitions are only in
the electronic natures of these Franck–Condon-type excited states, from which the lattice
relaxation and the proliferation start. However, this small difference in the initial state of the
relaxation afterwards diverges and finally determines the occurrence or non-occurrence of the
photoinduced phase transition. This is the so-called ‘initial condition sensitivity’, peculiar to
the dynamics of nonlinear systems.

As is well known, the initial condition sensitivity has been studied mainly from the
mathematical point of view, by taking classical nonlinear model systems with only a few
degree of freedoms [6]. The setting up of the initial condition, in this case, is also a purely
mathematical and artificial procedure in order to solve nonlinear differential equations that
describe these model systems. On the other hand, the present case is the formation of a
macroscopic order in a real material, and the setting up of the initial condition itself is also a
real physical process. As mentioned before, it is set by choosing the spatiotemporal pattern
of the exciting photon pulse and, hence, it is in compliance with the quantum uncertainty.
Thus, the studies for the photoinduced phase transitions will open new aspects of the nonlinear
dynamics and self-organization phenomena.

5. Adiabatic path of photoinduced ionic–neutral phase transition in TTF-CA crystal

Keeping these points in mind we have, very recently, theoretically clarified the adiabatic
relaxation path, which starts from a Franck–Condon-type optical excitation in the ionic ground
state of the TTF-CA crystal, and terminates up to the large N-domain formation in this
crystal [7].

Let us review this in detail. In order to clarify the photoinduced phenomena in TTF-CA
theoretically, we have to specify our microscopic model to describe the many-electron system
strongly coupling with lattice distortions (phonons) in this molecular crystal. The constituent
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TTF and CA molecules are, of course, originally neutral. However, when they are condensed
as a crystal at low enough temperatures below 84 K, the whole system becomes the ionic and
dimerized phase shown in figure 2(a). At temperatures higher than 84 K, it returns to the neutral
and monomeric phase as shown in figure 2(d), and this ordinary thermal phase transition is the
first-order one [8].

As shown by Soos theoretically [9], the change from the original neutral state to the
ionic one can be described as an electron transfer from the highest occupied molecular orbital
(HOMO) of TTF to the lowest unoccupied molecular orbital (LUMO) of CA. The main energy
gain in the ionic state relative to the neutral one is the long-range Coulomb interaction between
electrons and ions, in particular the Coulomb attraction between a cation and an anion thus
generated, and this energy gain increases if the inter-molecular distance decreases after the
ionization, as shown by Sakano and Toyozawa [10].

Figure 4. Schematic illustration of (a) neutral and (b) ionic phases in TTF-CA crystal. Up and
down arrows denote the electrons and their spins. � denotes the energy difference between the
HOMO and the LUMO. q� is the displacement of the molecule at that site.

5.1. Model Hamiltonian

Our theory is intended to take these essential points into account directly, and is based on the
extended Peierls–Hubbard model for valence electrons in the HOMO of TTF molecules and the
LUMO of CA molecules as schematically shown in figure 4 [7]. The inter-molecular Coulomb
repulsion in this model is assumed to depend nonlinearly on the inter-molecular distance. This
model also takes weak interactions between 1D chains into account, so that we can describe
the N-domain formation in the three-dimensional TTF-CA crystal more realistically. Our
Hamiltonian reads

H = Hel + Hph + Hinter (1)
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where Hel , Hph and Hinter denote the Hamiltonians of the electron part, the phonon part and
the inter-chain interaction. The electronic part Hel is given as

Hel ≡ −Ti

∑
�,σ

[(C+
�,σC�+1,σ ) + HC] +

�

2

∑
�

(−1)�n� + U
∑
�

n�,αn�,β

−
∑
�∈odd

V�(q�, q�+1)[2 − n�]n�+1 −
∑

�∈even

V�(q�, q�+1)[2 − n�+1]n� (2)

n�,σ ≡ C+
�,σC�,σ n� ≡

∑
σ

n�,σ (3)

where Ti is the transfer energy of an electron between a HOMO and its neighbouring LUMO.
C+

�,σ is the creation operator of an electron with spin σ at the �th lattice site, which is numbered
from left to right along the 1D chain as shown in figure 4: odd sites correspond to the HOMO,
while the even ones correspond to the LUMO. � in (2) is the energy difference between the
HOMO and the LUMO, while U is the intra-molecular Coulomb repulsive energy of electrons,
and is assumed to be common to both the HOMO and the LUMO. V� in (2) is the Coulomb
interaction between two neighbouring molecules, wherein the total charge in the TTF site
(� ∈ odd) is +[2 − n�], while that in the CA site (� ∈ even) is −n�. As mentioned before,
this interaction is assumed to depend nonlinearly on the change of the inter-molecular distance
(q� − q�+1), where q� is the displacement of each molecule along the chain axis as shown in
figure 4. The unit of length is the original inter-molecular distance. Thus, V� is given as

V�(q�, q�+1) = V0 + β1(q� − q�+1) + β2(q� − q�+1)
2 (4)

where V0 is the original value of V�, while β1 and β2 are its first- and second-order expanding
coefficients with respect to (q� − q�+1).

It is well known that the electron–phonon coupling leading to the dimerization may have
two origins. The first one is the present case shown in (4), being the modulation of V�: this
model was first proposed by Sakono and Toyozawa [10]. The second one is the modulation of
Ti [11–13]. Because of the small overlap between the HOMO and the LUMO, this Ti becomes
so small that its distance variation can be neglected. Moreover, as we will show later, our
model is rather straightforward to make the N–I phase transition a first-order one, in contrast
to the SSH model [11], which makes the transition to be the second order.

The phonon part Hph of (1) is given as

Hph ≡
∑
�

S1

2
(q� − q�+1)

2 +
∑
�

S2

4
(q� − q�+1)

4 (5)

wherein a fourth-order potential with a coefficient S2 is introduced, as well as the ordinary
second-order S1, while the kinetic energy of phonons are neglected because of the adiabatic
approximation.

As for the inter-chain interaction Hinter , we neglect it in the study for the ground state
properties. This inter-chain interaction is tacitly assumed to be so small as to give almost no
contribution provided that the ground state is uniform for all the chains in the crystal, whether
it is the dimerized I-phase or the monomeric neutral one. Only if a large and macroscopic
domain appears in the I-phase, is this inter-chain interaction assumed to bring an appreciable
energy increase. We give its practical form later in detail.

Using this model Hamiltonian, let us now set up our simplistic picture for both the I-
and N-phases. The N-phase is such that the HOMO of the TTF is filled with two electrons
of opposite spins (↑ and ↓), while the LUMO of the CA is vacant, as schematically shown
in figure 4(a). Thus, the two constituent molecules are literally neutral, while the electronic
state realized in this system is just equal to the charge density wave (CDW) state of the double
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period. On the other hand, the I-phase is such that the HOMO and the LUMO are alternately
occupied by the electrons of ↑ and ↓ spins as shown in figure 4(b). Within this picture, this
state is just equal to the spin density wave (SDW) state of the double period. However, as
shown in figure 4(b), this I-phase also has the dimerization between neighbouring TTF and
CA molecules.

Here we should note why (4) is nonlinear and (5) is anharmonic. If we retain only the
linear term in (4), the energy gain due to the dimerization in the I-phase cancels between left
and right of each molecule, since our system is not a single ionic pair but a 1D chain crystal. For
this reason, the nonlinear term is introduced in (4). Accordingly, the quartic anharmonicity is
also introduced in (5). It comes from the inter-molecular repulsion, and prevents unphysically
large dimerizations.

In our theory, we have eight parameters: Ti , �, U , V0, β1, β2, S1 and S2. The values of
these parameters are determined so that they, as a set, reproduce the main experimental and
theoretical results already existing prior to our theory. For Ti , we use the ab initio calculation by
Katan [14]. On the other hand, from spectroscopic studies in the visible and infrared regions,
the total charge induced at the CA site of the I-phase is determined to be ρI = 0.8 [15]. By
the same experiment, the total charge induced at the CA site of the N-phase is determined
as ρN = 0.3. Unlike the simplistic picture shown in figure 4, these induced charges ρI and
ρN are not natural numbers such as 1 or 0, but are fractional, because the valence electrons
are quantum mechanically itinerant, as denoted by the non-zero value of Ti . In addition to
these, there are the following five well known experimental results. By the x-ray structure
analysis, the dimeric displacement of each molecule in the ionic ground state is determined to
be 2.5% of the original intermolecular distance [8]. Moreover, in the light absorption spectrum
of the I-phase, two CT absorption peaks appear at 0.6 eV and 1.0 eV with an intensity ratio
1: 0.5, while, in the N-phase, only a single CT peak appears at 0.6 eV [15]. Using these
data, we can determine our eight parameters without serious ambiguity as Ti = 0.17 eV,
� = 2.716 eV, U = 1.528 eV, V0 = 0.604 eV, β1 = 1.0 eV, β2 = 8.54 eV, S1 = 4.86 eV and
S2 = 3.4 × 103 eV.

5.2. Ground state properties

Let us now consider the properties of the ground state given by this Hamiltonian H , using
the unrestricted Hartree–Fock approximation. Within this approximation, we can reduce the
two-body terms of Hel into one-body terms as

Un�,αn�,β → U(n�,α〈n�,β〉 + 〈n�,α〉n�,β − 〈n�,α〉〈n�,β〉) (6)

V�n�n�+1 → V�

{
(n�〈n�+1〉 + 〈n�〉n�+1 − 〈n�〉〈n�+1〉)

−
∑
σ

(〈m+
�,σ 〉m�,σ + m+

�,σ 〈m�,σ 〉 − 〈m+
�,σ 〉〈m�,σ 〉)

}
(7)

m�,σ ≡ C+
�,σC�+1,σ (8)

where 〈· · ·〉 denotes the expectation value of operator . . .. This is unknown at the present
stage, but will be determined later self-consistently. Since our system is the half-filled system
wherein the total number of the lattice sites (Nt ) is equal to the total number of electrons as

Nt

2
=

∑
�

n�,α =
∑
�

n�,β (9)

we assume for 〈n�,σ 〉, 〈m�,σ 〉 and q� the following forms with the double period:

〈n�,σ 〉 = 1
2 + (−1)�δnσ 〈m�,σ 〉 = mσ + (−1)�δmσ q� = (−1)�q0 (10)
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where δnσ , mσ , δmσ and q0 are to be determined within the Hartree–Fock and adiabatic
approximations.

The Hartree–Fock-type self-consistent equation for these δnσ , mσ and δmσ gives two
solutions for given q0, corresponding to the I-phase with δnα ≈ −δnβ (SDW) and to the N-
phase with δnα ≈ δnβ (CDW). In figure 5, we have shown the total energyEg thus theoretically
calculated as a function of q0, and these I- and N-phases are shown to be pseudo-degenerate
with each other. The energy minimum of the I-phase is 0.002 eV lower that of the N-phase,
and they are separated by an adiabatic energy barrier of about 0.0045 eV. Thus the I-phase is
the true ground state, while the N-phase is the false one, and both phases are locally stable.
Furthermore, the I-phase is theoretically shown to be dimerized about 2.9% of the lattice
constant, while the N-phase is not dimerized (q0 = 0). Although we have been concerned
only with the adiabatic energy at absolute zero temperature, the presence of the aforementioned
adiabatic energy barrier means that the ordinary thermal phase transition between N-phase and
I-phase is of first order.

Figure 5. Total energy per site for neutral (- - - -) and ionic (——) phases as functions of q0 [7].

In figure 6(a), we have illustrated the charge and the spin density distributions calculated
for the I-phase. This phase is characterized by the strong SDW order (δnα ≈ −δnβ ≈ 0.4)
mixed with a weak CDW-type order. The calculated induce charge ρI is 0.95, being quite
large but still fractional. Figure 6(b) demonstrates the N-phase, and there is only the CDW-
type order (δnα ≈ δnβ ≈ 0.4). The calculated induced charge ρN of this phase is 0.2, being
comparatively small, but still significant due to the finiteness of Ti .

5.3. Energy band structure and lowest excited state

Figure 7(a) presents four one-electron energy bands of the I-phase, obtained as functions
of a wavevector, by using this unrestricted Hartree–Fock approximation. It has an
antiferromagnetic broken symmetry in the spin space. There are two bands for each up-
and down-spin electron as distinguished by the arrows in figure 7(a). In the ground state, the
two lower bands are occupied, while others are vacant. The lowest band, being occupied by
up-spin electrons, is mainly composed of the LUMO of TTF, while the second lowest band,
being occupied by down-spin electrons, are mainly composed of the HOMO of CA. In this
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Figure 6. Charge and spin densities of (a) ionic and (b) neutral phases as functions of � [7].

system, the elementary optical excitation is such that a down-spin electron goes from the
second lowest band to the third one, as shown by a dashed arrow in figure 7(a). This third
band is mainly composed of the HOMO, which is already occupied by an up-spin electron,
and hence the excitation energy partly due to U in (2).

If we change our picture from the wavevector space to the real space, this excitation
results in a doubly occupied HOMO and a vacant LUMO, while all other sites still keep the
original single occupancy. The electron and the hole thus created by light attract each other
through −V�, and make the aforementioned bound state called the CT exciton, as schematically
shown in figure 7(b), which is the same as the one already shown in figure 2(b). This is the
lowest Franck–Condon-type excited state, calculated by our theory based on the unrestricted
Hartree–Fock approximation, reinforced by including the electron–hole attraction at the final
state of the optical transition [7]. Using this reinforced theory, we have also calculated the
spectral shape of the CT excitation including classical lattice fluctuations [7]. The resultant
spectral shape has two peaks at 0.6 and 1.0 eV in the case of the I-phase, while, in the case of



Photoinduced structural phase transitions and their dynamics R705

Figure 7. (a) The energy bands in the ionic phase. The lower two bands are occupied by up
and down spin electrons as denoted by corresponding arrows. The dashed line denotes the lowest
excitation in the band picture. (b) Schematic illustration of the charge transfer excitation in real
space [7].

N-phase, it has a single peak at 0.6 eV. Thus, our theory can successfully reproduce the known
experimental results.

5.4. Relaxation path

Let us now proceed to the lattice relaxation path of optical excitations. The visible photon has
a long wavelength of about 1000 times the lattice constant, and each photon can make a single
CT exciton per this length. Among many excitons thus created in the whole ionic crystal, we
will focus only on a single CT exciton and will clarify its lattice relaxation path. This path starts
from the Franck–Condon state, and terminates up to the macroscopic N-domain formation. In
order to describe this path theoretically, we introduce the following lattice distortion pattern
q�:

q� = (−1)�q0

{
1 + �q

[
tanh

(
θ

(
|�| − �0

2

))
− 1

]}
. (11)

Here (−1)�q0 denotes the dimeric distortion of the ionic ground state from which we start. The
second term in the curly brackets {· · ·} denotes a local lattice displacement induced by a new
excited domain. �q is its amplitude, θ corresponds to the width of the domain boundary, and
�0 is the domain size. Typical domain structures given by these parameters are demonstrated
in figure 8. When �q < 0.5, the lattice inside of the domain has a reduced dimerization, but
is still in the same phase as the original lattice outside of the domain, and hence it corresponds
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Figure 8. The lattice distortion pattern to describe the relaxation as a function of �. �0 is the
domain size. θ is the width of the domain boundary.

to a new I-domain. In the case of the second situation �q = 0.5, it is obvious that the inside
lattice has no dimerization at all. Therefore, it corresponds to a N-domain.

Let us return to the problem ofHinter . The distance between the TTF and the CA molecules
within a chain is about 3 Å, while the inter-chain distance is about 10 Å, and hence, as mentioned
before, we have neglected this interaction, assuming that it will give no serious effect. Even
for the excited domain, this situation will be same, if the new displacement (q� − (−1)�q0)

associated with this new domain is small as compared with the original displacement in the
ground state, |q� − (−1)�q0| � q0. On the other hand, when the new displacement becomes
very large, |q�−(−1)�q0| � q0, various inter-molecular repulsions will also act, and will give a
nonlinear increase of the lattice potential, just as shown in equation (5) and figure 5. Moreover,
this effect will become appreciable only when the new domain expands to a macroscopic size
in a single chain. To take this nonlinear inter-chain interaction into account effectively, we use
the following form:

Hinter =
∑
�

{
K1(q� − (−1)�q0)

2 + K2(q� − (−1)�q0)
4 + K3(q� − (−1)�q0)

6

}
(12)

where q� denotes the lattice distortion of a central chain on which we focus, while (−1)�q0 is
the representative of the displacements of environmental chains, and Ki(i = 1, 2, 3) denotes
the 2ith expanding coefficient with respect to the new distortion. These environmental chains
are assumed to be frozen in the ionic ground state, being never excited whatever occurs in
the central chain. For practical calculations, we take the following values: K1 = 0.6949 eV,
K2 = −1.415 × 103 eV and K3 = 9.699 × 105 eV. These values are so chosen that the
interchain interaction becomes appreciable only when |q� − (−1)�q0| � 2q0 and �0 � 102.

Figure 9 demonstrates the adiabatic energy surface of the ground state Eg and that of the
first excited state Ex1 thus obtained, as a function of �q and �0. θ is determined to minimize
Ex1, since we are going to clarify the relaxation path of the excited state. All the energies are
referenced from the energy of the ionic true ground states (�q = 0, �0 = 0) shown in figure 5.
In figure 9(a), the region with �q < 0.5 is still the I-phase, which has the SDW-type order
already shown in figure 6(a). In the plateau region (�q ∼= 0.5 and �0 � 40) of figure 9(a),
the N-domain appears, and it has the CDW-type order just as in figure 6(b). We have various
shallow local minima in this plateau region, an example of which is shown in the enlarged
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Figure 9. The calculated adiabatic energy surfaces in two-dimensional space spanned by �q and
�0. (a) The ground state Eg . The grey line denotes the steepest ascending line from the ionic true
ground state to the neutral domain. The enlarged inset denotes one of the local energy minima.
(b) Front view of the lowest excited state Ex1. (c) Back view of the lowest excited state Ex1. All
the energies are referenced from the ionic true ground state [7].

inset to figure 9(a). The presence of these local minima is mainly due to the discreteness of
the lattice, and makes the N-domain stable and long-lived. As �q and �0 increase further
(�q � 0.5, �0 � 50) from this plateau region, Eg also increases further. This increase is
mainly due to Hinter given by (12), and partly due to the intrinsic energy difference between
the I-phase and the N-one shown in figure 5.

Figures 9(b) and 9(c) show front and back views of the adiabatic energy surface of the
lowest excited state Ex1. At the origin (�q = 0, �0 = 0), or at the Franck–Condon state, a
local minimum appears, and it is due to the CT exciton. There is another local minimum at
around �q = 0.5 and �0 = 45. It corresponds to an excited state of the N-domain, which has
the same CDW-type order as that of the ground state, except for the domain boundary shown
in figure 2(c) by the two dashed lines. As �q and �0 increase further (�q � 0.5, �0 � 50),
Ex1 also increases further. This increase is again mainly due to Hinter , and partly due to the
intrinsic energy difference between the I-phase and the N-one. Thus, Hinter is essential to
make the N-domain locally stable.

In figure 10, we have shown both Eg and Ex1 as a function of �0, along the steepest
ascending line from the true ionic ground state to the N-domain. This line, denoted by grey in
figure 9(a), is determined to be always orthogonal to the equi-potential line. In the adiabatic
energy curve of Ex1, we can see the two local minima mentioned before. The first one at �0 = 0
corresponds to the CT exciton. While the second one at �0 = 45 corresponds to the N-domain,
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Figure 10. Adiabatic energies of the ground state Eg and the lowest excited state Ex1 along the
steepest ascending line. The dashed curve denotes the expected relaxation path to generate the
neutral domain. The enlarged inset denotes one of the local minima in the ground state [7].

which is a little above the CT exciton. These two minima are clearly separated by a high
adiabatic potential barrier with each other. As shown in figure 2(c) by the two dashed lines,
we have two boundaries between the I-phase and the N-phase. The energy increase to create
these two boundaries makes a small size N-domain (�0 < 40) too unstable in the excited state.
It can be stable only when its size exceeds a critical value (�0 ≈ 40), just like the formation of
a gaseous bubble in an overheated liquid. We should also note that it is the characteristic only
of the excited state Ex1. In the ground-state energy curve Eg shown in figure 10, we have no
such high barrier, but only low barriers as shown in the enlarged inset.

Thus, we can conclude that the single CT exciton alone can never result in the N-domain
formation directly. Only when our system is excited by a large excess electronic or vibrational
(phonon) energies over the single exciton state can it overcome this high barrier and result in
N-domain formation, as shown in figure 10. In other words, only when we have such a large
excess energy at the very beginning of the relaxation, can this excess energy be converted into
the exciton proliferation, and induce various other nonlinear processes during the relaxation.

Finally, it should be noted that the process described above is only the early stage or the
nucleation process of the macroscopic photoinduced phase transition. The neutral domain thus
created will stay in the shallow minimum for a longer time than the one oscillation period of
phonon. Hence, during this stay, it can move diffusively within a chain, and can aggregate
with other N-domains created by other photons, and result in a global phase transition.

5.5. High-energy optical excited states in SDW state

As mentioned above, the high-energy optically excited states are responsible for the
photoinduced phase transition, rather than the single CT exciton. Hence, we have to clarify
the nature of these highly excited states of the SDW state. In the Franck–Condon state,
as mentioned before, quantum and dynamical natures of the electron–phonon interaction do
not work, since the lattice is fixed at the ground-state configuration. As is well known, the
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electron–phonon interaction is a retarded one, which can start working quantum mechanically
about 10−12 s after the optical excitation. The inter-electron Coulomb interaction, being the
instantaneous force, will dominate the nature of highly excited states, since the starting ground
state is the SDW state. In order to clarify this effect, however, the unrestricted Hartree–Fock
approximation is too crude, and we have to take into account effects of quantum fluctuations
of itinerant electrons due to the Coulomb interaction. For this reason, we clarify higher
optical excited states of the half-filled SDW state, using a simplified one-dimensional extended
Hubbard Hamiltonian

Hex = −Ti

∑
�,σ

[(C+
�,σC�+1,σ ) + HC] + U

∑
�

n�,αn�,β + V0

∑
�

n�n�+1. (13)

When U > 2V0, this Hamiltonian gives the SDW state with the antiferromagnetic order, as
figure 4(b), although we have neither � nor the dimeric electron–phonon interaction. When
U < 2V0, we have the CDW state just as figure 4(a). When U exceeds 2V0 only a little, we
get a situation similar to figure 5, that this SDW state is just below the CDW one. Thus, as far
as the Franck–Condon states are concerned, we can well reproduce the situation realized in
the TTF-CA crystal, using this simple model. The benefit of this simple model is that we can
calculate higher excited states, using the non-Grassmann path-integral theory [16, 17], which
takes the Coulombic inter-electron quantum correlations straightforwardly. By this theory,
various optical spectra have been calculated under the bistable condition (U − 2V0) � U

[16, 17]. From these results, we can conclude that high-energy optical excited states with
energies a few times greater than the CT exciton are the random excitations of several CT
excitons coupled with many magnons or spin-excitations. As is well known, in the SDW
state, we have the Goldstone mode called magnon, whose energy is gapless and has a linear
dispersion. When the SDW state has a small dimerization, a small energy gap opens in this
dispersion. However, the above characteristic of high-energy excited states is not affected.

One might consider the possibility that a macroscopic CDW domain (N-domain) could be
directly excited just after the Franck–Condon transition from the SDW ground state, by using
only a few photons. However, this is impossible since these two states are macroscopically
orthogonal with each other. It is theoretically obvious that a dipole operator of a photon can
change the state of only one electron, before and after the transition. An electron and a hole thus
created by this dipole transition can also change the states of many other surrounding electrons
through the Coulomb interaction. However, this is nothing other than random scattering,
being far from making a well defined macroscopic spatial order at once. The macroscopic
spatial order can be established only after this highly excited state is cooled to some local
minimum, dissipating its excess energy one by one into the phonon system, which acts as
a heart reservoir, as shown in figure 10. This is the essence of lattice relaxation and the
macroscopic order formation.

6. Early-time nonlinear non-equilibrium quantum dynamics and initial condition
sensitivity

So far, we have been concerned only with the adiabatic natures of the TTF-CA. We now proceed
to the early-time nonlinear non-equilibrium quantum dynamics of the PSPT. To theoretically
describe this dynamics, however, the practical situation realized by (1) is too complicated.
Hence, we have to simplify our problem, extracting only its essential points from the viewpoint
of the PSPT.

(1) When the exciting photon is resonated to the CT exciton (∼0.6 eV), these excitons are
created homogeneously in the 1D crystal, and hence the mean inter-exciton distance
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becomes rather long as compared with the lattice constant. Just after the intra-molecular
excitation (∼2.2 eV), an electron–hole pair is created in a same molecule, with energy a
few times greater than the CT exciton. This high-energy pair is electronically unstable even
at the Franck–Condon state, and will immediately decompose into several CT excitons,
through inter-molecular Auger decays or other Coulombic many-body scatterings. These
several CT excitons are expected to be very close to each other around the original
molecule. Therefore, the difference in the initial condition between the CT excitation and
the intra-molecular one is reduced only to the difference of the initial distance between the
adjacent photogenerated CT excitons. We also have many other excitations in between
(0.6–2.2 eV), and the corresponding spatial arrangements of the CT excitons will be
different from each other, even if the total absorbed photonic energies are the same. To
describe this difference, we have schematically shown, in figure 11, three typical cases
of such spatial arrangements: (a) sparse, (b) close and (c) moderately distant excitations.
Using these three typical arrangements of excitons, we will clarify the initial condition
sensitivity.

(2) There must be a hidden but intrinsic multi-stability. A false ground state has to be just above
the true one, and the energy difference between them per unit volume should be larger
than the thermal energy, but much smaller than the visible photon energy, as schematically
shown in figures 1, 5, 10 and 12.

(3) There must be a nonlinear mechanism through which the excitons can proliferate. This
mechanism should be efficient enough to overcome various radiative and non-radiative
decay channels of the CT excitons. These decay channels will act in every intermediate
stage of the relaxation to hinder the proliferation, as schematically shown in figure 12.

(4) At the final state of the Franck–Condon transition, a large excess energy should be given to
the excitons, as schematically shown in figures 10 and 12. By using these excess energies,
the initially created excitons can proliferate, under the energy conservation law.

(5) The resultant domain should be a local minimum in the adiabatic potential surface of the
ground state, so that this domain can have a sufficiently long lifetime worthy to be called
PSPT. Thus, the initially created excitons have to go through various intersections of the
potential surfaces diabatically, so that they can finally reach the local energy minimum, not
in the excited state potential surface, but in the ground-state one, as shown schematically
in figure 10 and 12.

Figure 11. Schematic illustrates of CT exciton excitations with various distances. (a) Sparse,
(b) close and (c) moderately distant excitations.
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Figure 12. Schematic illustration of the dynamics of exciton relaxation and the domain formation.

6.1. Model Hamiltonian for quantum dynamics

In order to describe the above points from a unified theoretical point of view, we will use a
more simplified model than (1), and will clarify the early-time quantum dynamics of the PSPT.
For this reason, we take the following many-exciton system coupling strongly with Einstein
phonons in a quasi-1D crystal [18, 19]. Its Hamiltonian (Hme) is given as

Hme = Ee

∑
�

B+
� B� − Te

∑
�

[B+
� B�+1 + HC] + ω

∑
�

b+
� b� − ωS1/2

∑
�

B+
� B�(b

+
� + b�)

−Ve

∑
�

B+
� B�B

+
�+1B�+1 +

∑
�,�′(�=�)

G(|� − �′|)B+
� B�(B

+
�′ + B�′) + Hie (14)

where B+
� is a creation operator of an exciton (a boson) at a site � with an energy Ee, and Te is

its inter-site transfer energy. b+
� is the creation operator of the Einstein phonon at site � with a

frequency ω, and S is the exciton–phonon coupling constant. Ve denotes a phenomenological
inter-exciton attraction. In the present theory, we will not specify its microscopic origin. It
can be an effective attraction due to the van der Waals force, other Coulombic interactions,
or some inter-site exciton–phonon couplings. The occupancy of a single site by more than
one exciton is excluded from the beginning. G(� − �′) in the sixth term represents the third-
order anharmonic inter-exciton coupling. Through this anharmonicity, an exciton at site �′ is
created or annihilated by another exciton at site �. Such a nonlinearity results from the long-
range Coulomb interaction between electrons and holes constituting excitons. The Coulomb
interaction is originally quartic with respect to these Fermion operators, being quite nonlinear
from the beginning. Hence, to take into account this nonlinearity or anharmonicity is quite
natural. However, through this nonlinearity the excitons can proliferate, as shown later in detail.
Furthermore, since this Coulombic nonlinearity is an instantaneous force with no retardation
effect, it can cause the proliferation readily.

The last term Hie denotes the interchain interaction:

Hie =
∑
n

h(n)
∑
i

|n, i〉〈n, i| (15)

where n denotes the total number of the excitons, and i specifies each quantum state |n, i〉
within n exciton states. Thus,

∑
i |n, i〉〈n, i| is a projection operator into the n-exciton state.

h(n) denotes an effective potential given from the other chains to this n-exciton system, when
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it is created in the central chain on which we focus. This potential h(n) is assumed to depend
only on the total number n, irrespective of various spatial arrangements of n excitons. The
functional form of h(n) is also assumed to be quite nonlinear in the sense that it is almost zero
when n is smaller than its critical value nc, while it becomes nonlinearly appreciable when n

exceeds nc. The role of this interaction is almost same as that of (12), and it makes the domain
with nc excitons locally stable, as schematically shown in figure 12.

It should be noted that the present exciton–phonon system is our relevant system, and is
also assumed to couple linearly with the photon field and acoustic phonon modes, which act
as a heat reservoir during the relaxation, although they are not written here explicitly.

6.2. Relaxation and occurrence or non-occurrence of the PSPT

Using figure 12, let us now schematically explain the characteristics of the relaxation processes,
which lead to the occurrence or non-occurrence of the PSPT. The solid curve and thin dotted
curves denote adiabatic potential surfaces of the ground and excited states. The global
minimum of the lowest curve denotes the ground state. The other local minima 1, 2, . . . of this
curve denote the lowest energy states with 1, 2, . . . excitons, respectively. The local minimum
nc has the lowest energy among these local minima 1, 2, . . .. The upward solid arrows denote
the initial photoexcitations. The dash-dotted arrows denote the main relaxation paths. The
downward dotted arrow denotes radiative decay of excitons. These non-radiative and radiative
decays are brought about through the interaction between our relevant system and the acoustic
phonon or photon fields mentioned before. We also have assumed a multi-stable situation
where the lowest energy of (n+ 1)-exciton state is energetically close to that of n-exciton state.
This condition is realized when (Ee − S) and Ve are well balanced in (15), as (Ee − S) ≈ Ve.

In figure 12 the excitons are created from the ground state by photoabsorption (the leftmost
upward solid arrows). Then, the exciton relaxes along the following two paths. One path is
the vibrational (or lattice) relaxation, where the system changes along an adiabatic potential
curve of the excited state (the dash-dotted curves in figure 12). The photoexcited state along
this path has large excess electronic and vibronic (phonon) energies. The other path is the
direct radiative decay (the downward thick dotted arrow in figure 12). Here, the former path
is the main one because vibrational relaxation is faster than radiative decay. As seen from the
figure, many adiabatic potential surfaces come close to each other at many points. Around
such points, the diabatic transition occurs. If the relaxation proceeds toward the right through
such processes, the proliferation becomes successful.

As mentioned in section 4, various relaxations can start from almost the same Franck–
Condon states, as long as the initially absorbed total photonic energies are same. However, these
starting points are slightly different from each other, depending on the photoexcitation, because
their electronic structures are different. During the relaxation, the initial small difference
increases. Some quickly return to the ground state non-radiatively, while others proceed
toward the right in figure 12 and stay in multi-exciton state for a long time. This is the initial
condition sensitivity mentioned before. Furthermore, among the latter cases, some quickly
reach the lowest energy state with nc excitons, while others, because of the tunnelling, rather
slowly reach the nc exciton state, although they relax quickly to the lowest potential curve.

Here we emphasize about the prolongation of the lifetime of these various transient states,
which appear during the relaxation. As mentioned above, the PSPT is a transient phenomenon,
and the system always returns to the ground state. However, the state generated by the PSPT
can become relatively stable, and take a long time to return to the ground state. This is because
the overlap integral between the multi-exciton state and the ground state becomes smaller
and smaller, as the proliferation proceeds from left to right in figure 12. Hence the transition
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Figure 13. Schematic illustration of the iterative equation, and the generation crossover.

between them becomes very difficult, even if the photon and the acoustic phonon spontaneously
try to induce it, through their quantum fluctuations. Thus, the more the decay time elongates,
the more the resultant domain becomes large and stable.

6.3. Derivation of iterative equation for exciton proliferation

In order to investigate the time evolution of the aforementioned exciton–phonon system, we are
now at the stage to derive the master equation under the Markov approximation for the photon
field and the reservoir. However, there is a serious numerical difficulty in the direct calculation
of this time evolution in large systems, because the quantum mechanical treatment of Einstain
phonons leads to too large dimensional calculations. Therefore, in order to overcome this
numerical difficulty, we derive the iterative equation for the exciton proliferation. The basic
idea is schematically shown in figure 13.

We focus only on the front of the expanding photoinduced domain, and the contributions
from the other excitons, not at this front, are approximated by a mean field. As proliferation
proceeds, the position of this front also moves. At step 1 in figure 13, the front of the domain
is assumed to be inside the box. This box is our relevant system, within which we calculate
excitons, Einstein phonons and their interactions, fully quantum mechanically. We take the
size of the box as four lattice sites around the front. Inside of this box, we prepare an exciton
with an excess energy, represented by a double circle. We call this the ‘mother exciton’. We
also prepare several excitons outside of our relevant system (the box), and they are represented
by black circles.

They are localized at each lattice site, and their energies are fixed to the lowest vibronic
ones. We call them ‘frozen excitons’. The mother exciton can proliferate through G(� − �′)
in (15) by using her excess energy, and can make her ‘daughter exciton’ (step 2 in figure 13).
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Through G(� − �′) in (15), the frozen excitons can also help this proliferation as an external
mean field, given as∑

�,�′(�=�)

G(|� − �′|)〈B+
� B�〉(B+

�′ + B�′)

where 〈B+
� B�〉 denotes the frozen exciton density at that site.

As time goes by, this daughter exciton grows up, and the total number of excitons increases
(step 3 in figure 13). When the total number of excitons in the front increases by one, we
consider that the daughter has grown up to be an adult, and approximate that the following
generation crossover occurs (step 4 in figure 13). The mother exciton is replaced by a frozen
one, and the daughter exciton is taken as a new mother. Here, as seen from (15), it should be
noted that excitons (except frozen ones) can move between lattice sites in the box. Thus, the
exciton density has a non-integer value at each lattice site. Therefore, in the aforementioned
crossover, we regard the excitons whose densities are the largest and the second largest in the
box as the mother exciton and the daughter one, respectively. Furthermore, we assume that the
new mother inherits the excess energy, after this crossover. We determine this excess energy of
the new mother so that the total energy in the system is conserved before and after this crossover.
It becomes smaller and smaller than the starting one, because of the dissipation or relaxation.

By this crossover, the front moves, and accordingly the box moves. In fact, in the case
of figure 13, the front moves one lattice site towards the right. Then, we focus again only on
this new front, and iterate the aforementioned procedure, until the excess energy is exhausted
through the interaction between our relevant system and the aforementioned heat reservoir.
During this procedure, the size of the box around the front is kept unchanged. Therefore,
without enlarging our computer memory, we can numerically calculate the time evolution
dynamics of a large number of excitons in a large system.

This iterative procedure is justified when Te is small as compared with Sω in (15).

6.4. Numerical results

Let us now specify the values of the parameters in (15). Our purpose here is not a comprehensive
study for (15), but to study one of typical situations realized by a set of parameter values, which
is in compliance with the aforementioned five points, and makes the PSPT successful. As one
such example, the following values are taken: ω = 0.1 eV (h̄ = 1), Ee/ω = 9.5, Te/ω = 1.0,
S = 8, Ve/ω = 1.7, G(1)/ω = 0.2, G(2)/ω = 0.1, G(3)/ω = 0.067, G(4)/ω = 0.05,
G(5)/ω = 0.04 and zero for other G. nc is taken to be 10. The radiative damping rate of
the exciton is assumed to be 10−9 s at the Franck–Condon state, and afterward decreases in
proportion to the third power of the transition energy, while the damping of the Einstein phonon
due to its coupling with the acoustic phonon reservoir is assumed to be 20% of the phonon
energy ω. The large S corresponds to the large excess energy at the Franck–Condon state,
while finite ω/Te makes diabatic transitions possible.

We start from the initial condition that there are two localized excitons, just as shown in
figure 11. One of them is an exciton created by the Franck–Condon excitation from the ground
state. This is a mother exciton. The other exciton is taken as a frozen one, for the reason
mentioned before. In the following, the distance between these two excitons at the initial state
is represented by d0. Results are shown in figure 14, and the time evolution dynamics become
different according to this d0. The net exciton proliferation occurs only when d0 = 2, 3 and 4.
When d0 = 1 and ∞, the number of excitons increases a little from 2 only at early time.
However, the net proliferation does not finally occur. Therefore, the initial distance between
excitons should be moderate in order to get net proliferation. In the too-far distant case
(d0 = ∞), the nonlinearity among excitons does not work, and leads to no net proliferation.
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Figure 14. The total number of exciton as functions of time. d0 is the distance between initial two
excitons [18, 19].

On the other hand, in the too-close excitation case (d0 = 1), too-strong nonlinearity works, and
leads to exciton annihilation rather than its proliferation. Therefore, the critical nonlinearity
is necessary to realize net proliferation. Here, the case with d0 = ∞ corresponds to the CT
excitation below the threshold mentioned in section 3. In the intra-molecular excitation case, d0

takes various values within the force range of the aforementioned intermolecular Auger decay.
Among them, only the successful cases can finally survive (d0 = 2, 3 and 4). Furthermore,
even when the net proliferation occurs, the time evolution behaviour of each proliferation is not
the same but chaotic, according to the value of d0. For example, when d0 = 4, the proliferation
occurs more slowly than the other proliferating cases (d0 = 2 and 3). These results show the
initial condition sensitivity still exists even when the proliferation is successful.

7. Difference between photoinduced non-equilibrium phase and high-temperature
equilibrium phase

In the light of the progress of experimental and theoretical studies on photoinduced phase
transitions, a new but quite basic question has now emerged: namely, how is the photoinduced
phase practically different from the high-temperature equilibrium one? As has been mentioned,
the photoinduced phase is a non-equilibrium phase, brought about through the multi-stability,
or the pseudo-degeneracy of the ground state. However, when this multi-stable situation is
realized in our system, a state, similar to the false ground state, is also inferred to appear as an
equilibrium phase at high temperatures: that is, through the ordinary thermal phase transition.

In fact, both this photoinduced phase at low temperature and the equilibrium one at high
temperature are observed as shown in sections 3 and 5, and these two phases are similar. Thus
the aforementioned issue becomes quite serious and significant.
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7.1. Photoinduced phase transition in organo-metallic complex crystal

Recent experiments on the photoinduced phenomenon in the organo-metallic complex crystal
[Fe(2-pic)3]Cl2 · Et OH (2-pic = 2-amino-methyl-pyridine) have opened a new prospect in
the study of the aforementioned difference. In this crystal, as shown in figure 15, an Fe2+

ion and its neighbouring six nitrogen atoms of three 2-pic molecules make a complex, which
approximately has an Oh symmetry. As schematically shown by dashed lines in this figure,
this metal complex is bonded with other three neighbouring ones through the hydrogens, and
these hydrogen bonds result in inter-complex interactions. An Fe2+ ion has six electrons in its
3d orbitals (t2g, eg), and these electrons are in a crystal field, whose symmetry is almost Oh

as mentioned before. At absolute zero temperature, these six electrons, being in the three t2g

orbitals, become diamagnetic (S = 0) as shown in figure 15. This diamagnetic phase has a
strong light absorption band at around 2 eV, and the colour of this crystal is deep red. At about
120 K, a first-order phase transition occurs from this diamagnetic phase to a paramagnetic one
(S = 2), as shown in figure 15, and the colour of the crystal changes from deep red to yellow.

OHEtCl]pic)-2(Fe[ 23 ⋅

+26 Feofelectrons3d)(

Diamagnetic phase

( S = 0 ),  T < 120K

Paramagnetic phase

( S = 2 ),  T > 120K

ge

ge

2gt

2gt

Figure 15. The structure and electronic states of [Fe(2 − pic)3]Cl2 · Et OH.

Ogawa et al [20] have recently discovered the photoinduced phase transition in this crystal.
Shining 1.8 eV light onto the low-temperature diamagnetic phase of this crystal, they succeeded
in generating a macroscopic paramagnetic domain, as shown in figure 16. By this photoinduced
phase transition the colour of the crystal changes from the deep red to yellow, which is quite
similar to the yellow of the high-temperature paramagnetic phase. They also have found
the bi-directional nature of this photoinduced diamagnetic ↔ paramagnetic transition, and
threshold-type behaviour just like in the case of TTF-CA as mentioned in section 3.

In connection with this discovery, very recently, Tayagaki et al [21] have also succeeded
in observing Raman scattering spectra of these three phases: the low-temperature diamagnetic
phase, the high-temperature paramagnetic phase, and the photoinduced paramagnetic phase
at low temperature. The resultant three Raman spectra are shown in figure 17. One can
clearly see that the photoinduced phase is different from the other two phases, especially in the
shaded region, although the other spectral regions are similar to that of the high-temperature
paramagnetic phase. Tayagaki et al have assigned this difference in the shaded region to come
from a new parity violation of the aforementioned Oh symmetry around the 3d orbital.

According to the present status of our experimental study on this organo-metallic complex
crystal, however, a new interaction which originates this new parity violation cannot be clarified
sufficiently, because this crystal is really complex, as we can easily infer from figure 15.
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Figure 16. The photoinduced phase transition in [Fe(2 − pic)3]Cl2 ·Et OH. From Koshihara [20].
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Figure 17. The Raman spectra of [Fe(2 − pic)3]Cl2 ·Et OH in the paramagnetic phase (300 K), the
diamagnetic phase (70 K) and the photoinduced phase (30 K). The shaded area of the photoinduced
phase denotes the eccentric difference from other two spectra. From Tanaka [21].

7.2. Broken symmetry only in photoinduced non-equilibrium phase

It is quite clear that this new broken symmetry (or new parity violation) does not occur in both
the two equilibrium phases (the low-temperature diamagnetic phase and the high-temperature
paramagnetic phase), but occurs only in the photoinduced non-equilibrium phase at low
temperature. This difference between the equilibrium phase and the non-equilibrium one,
if once well established conceptionally, will greatly affect our studies of photoinduced phase
transitions in other materials. It means that we can discover a new interaction and its resultant
broken symmetry through the photoinduced non-equilibrium phase at low temperatures, even
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if this new interaction is not clearly observed in any equilibrium phase, such as the true ground-
state or high-temperature equilibrium phases.

Here, we should note how to recognize whether a new interaction exists and is operating in
a material. Ordinarily, such an interaction (or its resultant broken symmetry) is often neglected
or regarded not to exist at all from the beginning, if it is not clearly observed in any equilibrium
phases. The aforementioned experimental result [21], however, clearly tells us that this is a
prejudice which we have to overcome.

In order to make this point clear, let us now theoretically study a model system which
is more simple and standard than the organo-metallic case. Our purpose is to theoretically
describe the situation that a new interaction (Hn) appears explicitly only in the low-temperature
non-equilibrium phase as a broken symmetry, under the condition that it is almost completely
hidden in any other equilibrium phases at low and high temperatures. For this reason, we take a
quasi-two-dimensional system composed of Nt lattice sites and Nt electrons, coupled strongly
with site-localized phonons. Using this model, we will calculate the CDW-type metal–insulator
transition together with the new non-equilibrium phase at low temperatures, from a unified
theoretical point of view within the mean field theory. Its Hamiltonian (Hd ) is given as

Hd = −Td

∑
〈�,�′〉

∑
σ

C+
�,σC�′,σ − Sd

∑
�

Q�(n� − 1) +
∑
�

W(Q�) + Hn (16)

Hn = Ud

∑
�

n�,αN�,β (17)

where Td denotes the transfer energy of electron between nearest neighbouring two sites �

and �′ in a square lattice, and 〈�, �′〉 denotes this nearest neighbouring relation. Sd denotes
the coupling constant between electrons and a site-localized phonon mode whose coordinate
is Q�. W(Q�) denotes the potential energy of this site-localized phonon, while the kinetic
energy of this phonon is neglected, because of the adiabatic approximation. This W(Q�) is
assumed to be a triple-well function of Q�,

W(Q�) = (w1Q
2
� − w2Q

4
� + w3Q

6
�) (18)

and wi(i = 1, 2, 3) is the 2ith expanding coefficient of W(Q�) with respect to Q�. An
anharmonicity is again introduced, to make various equilibrium and non-equilibrium phases
of this system locally stable, or to make various phase transitions of this system first-order
ones. As for the new interaction Hn, we assume a Hubbard type inter-electron interaction with
only a small repulsion Ud .

When the strong coupling and the weak correlation condition (Sd > Td > Ud ) is realized,
the ground state of this system will be the CDW-type insulator, in which two electrons with up
and down spins make a strongly bound singlet pair, and this pair occupy a single site every two
sites, along both the x and y axes of this two-dimensional square lattice. Its high-temperature
phase will be the ordinary paramagnetic metallic state, although it has a very weak CDW-type
order because our model shown in (16) has the complete nesting.

As a typical example to describe this situation, we take following parameter values:
Td = 0.5 eV, Sd = 3 eV, Ud = 0.3 eV, w1 = 0.185 eV, w2 = 0.4 eV, w3 = 0.44 eV,
and assume the CDW- and SDW-type broken symmetries with the double period in both x and
y directions as

〈n�,σ 〉 = 1
2 + (−1)�x+�y δnσ Q� = (−1)�x+�yQ0 (19)

where �x and �y are x and y components of �, and other things in (19) are the same as in
equation (10), except for Q0 which denotes the amplitude of CDW-type lattice distortion.
Calculated results within the unrestricted Hartree–Fock approximation are shown in figure 18.
The transition temperature of system is 221 K as shown in figure 18(a), and our system
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Figure 18. (a) The phase diagram, and Q0 as a function of temperature T . (b)–(d) Free energies
in the two-dimensional space spanned by Q0 and δnα − δnβ : (b) 50 K, (c) 150 K and (d) 300 K.

discontinuously changes from the CDW state to the metallic one through a first-order phase
transition. This first-order nature is due to the anharmonicity in (18).

Let us now focus on the effect of the new interactionHn. Figures 18(b), (c) and (d) show the
calculated free energies as functions ofQ0 and the antiferromagnetic order parameter δnα−δnβ .
The figures include both equilibrium and non-equilibrium phases, and they become local
minima in this order parameter space spanned by Q0 and δnα − δnβ . The antiferromagnetic
order appears neither in the low-temperature CDW phase nor in the high-temperature metallic
one, although the original Hamiltonian Hd does include Hn. As mentioned before, in the CDW
state shown in figure 18(c), up- and down-spin electrons make a strongly bound singlet pair
through Sd in (16), and this pair occupies a lattice site alternately along the two crystal axes,
just as in figure 4(a). This strong singlet pairing kills the antiferromagnetic order, while, in
the metallic phase shown in figure 18(d), its high temperature obscures the antiferromagnetic
order. Thus, the antiferromagnetic order can appear only as a locally stable non-equilibrium
phase at low temperature, as shown in figure 18(b).

Under this circumstance, the new interaction Hn itself is often regarded as non-existent
from the outset. However, if this CDW ground state is illuminated by a light at low enough
temperature, a CT excitation occurs, and by this excitation, up and down electrons in a
lattice site will be separated into two neighbouring lattice sites as an antiferromagnetic pair.
This antiferromagnetic pair, once generated by light, will proliferate and will make a non-
equilibrium SDW domain just as in figure 4(b). Consequently, the photoinduced phase
transition research discloses a new interaction, even if it is completely hidden in all the
equilibrium phases.
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8. Further problems in photoinduced phase transitions

The history of photoinduced phase transition research is quite young, and there are a number
of further problems, which are important but have not been referred to in the preceding
sections.

As for the theories of the photoinduced phase transitions, here we have been concerned
only with the so-called itinerant models, in which the electrons or the excitons are itinerant from
site to site. In this connection, Koshino and Ogawa [22] have developed a unique theory based
on a site-localized two-level system (ground and excited states) interacting with other sites
ones through a classical spring constant. They term this ‘domino theory’ since, in this model,
a site-localized electronic excitation can proliferate through the spring constant just as in the
domino game. This theory successfully describes the photoinduced collective phenomena of
the previous organo-metallic complex crystal.

In the previous sections we have been concerned only with the PSPT, which involves some
change of the lattice structure. However, there are various other cases, such as photoinduced
magnetic phase transitions [23] and the photoinduced superfluid transitions of high-density
excitons [24–26], in which phase transitions or order formations occur only in the electronic
degree of freedom, without structural change of the lattice. Thus, through the photoinduced
phase transition research, we will be able to discover various new phases, with and without
structural change.
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